Laws of Exponents

\(x^{0}=1\)   (for \(x\neq0\))

\(x^{-a}=\frac{1}{x^{a}}\)

\(x^{\frac{a}{b}}=\sqrt[b]{x^{a}}\)

\(\left( xy \right)^{a}=x^{a}y^{a}\)

\({\left( \frac{x}{y} \right)}^{a}=\frac{x^{a}}{y^{a}}\)

\(x^{a}x^{b}=x^{a+b}\)

\(\frac{x^{a}}{x^{b}}=x^{a-b}\)

\({\left( x^{a} \right)}^{b}=x^{ab}\)


  • Laws of Exponents
  • Laws of Logarithms
  • Laws of Logic
  • Matrix Determinant