Two Variable Statistics Calculator


Data Input




XY
Count\(n=5\)
Sum\(\sum{x_i}=25\)
Mean (Average)Mean (Average): \[\overline{x}=\frac{\sum{x_i}}{n}\]\(\overline{x}=5\)
Minimum\(min=1\)
Q1\(Q_1=2\)
Median(Q2)\(Q_2=5\)
Q3\(Q_3=8\)
Maximum\(max=9\)
RangeRange: \[Range=Max-Min\]\(Range=8\)
Interquartile RangeInterquartile Range: \[IQR=Q3-Q1\]\(IQR=6\)
ModeMode: The most frequently occurring number(s)Mode: No Mode
Outlier(s)Outlier(s): Any numbers less than \[Q1-1.5\cdot IQR\] or greater than \[Q3+1.5\cdot IQR\]{ }
Corrected Sum of Squares\(\sum x^2=165\)
Corrected Sum of SquaresCorrected Sum of Squares: [S_{xx}=\sum{(x_i-\overline{X})^2}\]\(S_{xx}=40\)
(Sample) Variance(Sample) Variance \[s^2=\frac{\sum{(x-\overline{x}_i)^2}}{n-1}\]\(s^2=10\)
(Sample) Standard Deviation(Sample) Standard Deviation: \[s=\sqrt{\frac{\sum{(x-\overline{x}_i)^2}}{n-1}}\]\(s=3.1622776601684\)
(Population) Standard Deviation(Population) Variance: \[\sigma^2=\frac{\sum{(x-\overline{x}_i)^2}}{n}\]\(\sigma^2=8\)
(Population) Standard Deviation(Population) Standard Deviation: \[\sigma=\sqrt{\frac{\sum{(x-\overline{x}_i)^2}}{n}}\]\(\sigma=2.8284271247462\)
Count\(n=5\)
Sum\(\sum{y_i}=30\)
Mean (Average)Mean (Average): \[\overline{y}=\frac{\sum{y_i}}{n}\]\(\overline{y}=6\)
Minimum\(min=2\)
Q1\(Q_1=3\)
Median(Q2)\(Q_2=6\)
Q3\(Q_3=9\)
Maximum\(max=10\)
RangeRange: \[Range=Max-Min\]\(Range=8\)
Interquartile RangeInterquartile Range: \[IQR=Q3-Q1\]\(IQR=6\)
ModeMode: The most frequently occurring number(s)Mode: No Mode
Outlier(s)Outlier(s): Any numbers less than \[Q1-1.5\cdot IQR\] or greater than \[Q3+1.5\cdot IQR\]{ }
Corrected Sum of Squares\(\sum y^2=220\)
Corrected Sum of SquaresCorrected Sum of Squares: \[S_{yy}=\sum{(y_i-\overline{Y})^2}\]\(S_{yy}=40\)
(Sample) Variance(Sample) Variance: \[s^2=\frac{\sum{(y-\overline{y}_i)^2}}{n-1}\]\(s^2=10\)
(Sample) Standard Deviation(Sample) Standard Deviation: \[s=\sqrt{\frac{\sum{(y-\overline{y}_i)^2}}{n-1}}\]\(s=3.1622776601684\)
(Population) Standard Deviation(Population) Variance: \[\sigma^2=\frac{\sum{(y-\overline{y}_i)^2}}{n}\]\(\sigma^2=8\)
(Population) Standard Deviation(Population) Standard Deviation: \[\sigma=\sqrt{\frac{\sum{(y-\overline{y}_i)^2}}{n}}\]\(\sigma=2.8284271247462\)
Two-Variable Statistics
Box-and-Whisker Plot (Include Outliner)
Sum of Cross Products\(\sum xy=190\)
Corrected Sum of Cross ProductsCorrected Sum of Cross Products: \[S_{xy}=\sum{(x_i-\overline{X})(y_i-\overline{Y})}\]\(S_{xy}=40\)
CovarianceCovariance: \[\text{cov}(X,Y)=\frac{\sum{(x_i-\overline{X})(y_i-\overline{Y})}}{n}\]\(\text{cov}(X,Y)=8\)
Correlation CoefficientCorrelation Coefficient: \[r=\frac{\text{cov}(X,Y)}{\sigma_x\cdot\sigma_y}\]\(r=1\)
Coefficient of Determination\(r^2=1\)
Line of Best Fit\(y = x + 1\)
Residual plot

Disclaimer: All the programs on this website are designed for educational purposes only. They are tested however mistakes and errors may still exist. By using these programs, you acknowledge that you are aware that the results from the programs may contain mistakes and errors and you are responsible for using these results. The author is not responsible for errors and results from these programs.